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Abstract
The momentum transfer dependence of the self-motion of main chain
hydrogens in the α-relaxation regime of a glass forming polymer, polyisoprene,
has been thoroughly investigated by a combined effort involving fully
atomistic molecular dynamic simulations and quasielastic neutron scattering
measurements. In this way, we have established the existence of a crossover
from a Gaussian regime of sublinear diffusion to a strongly non-Gaussian
regime at short distances. We show that an anomalous jump diffusion model
with a distribution of jump lengths gives rise to such a crossover. This
model leads to a time-dependent non-Gaussian parameter exhibiting all features
revealed so far from various simulations of different glass forming systems.

1. Introduction

Valuable information on the dynamics taking place in the supercooled liquid state—the α-
relaxation—can be obtained by quasielastic neutron scattering (NS). In particular, the direct
microscopic observation of the structural relaxation in glass forming systems is realized by
studying the behaviour of the dynamic structure factor at its first maximum, which is due
to the correlations between the structural units. Such an investigation is possible by NS
measurements on fully deuterated samples. But also an additional insight on this problem
can be obtained by means of NS through an indirect probe as it is the scattered intensity
from protonated samples. This is directly related to the self-part of the van Hove correlation
function Gs(�r , t) corresponding to the hydrogens in the system. Gs(�r , t) is the probability of
6 Author to whom any correspondence should be addressed.

0953-8984/03/111127+12$30.00 © 2003 IOP Publishing Ltd Printed in the UK S1127

http://stacks.iop.org/JPhysCM/15/S1127


S1128 J Colmenero et al

finding an atom at time t at a position �r if it was at �r = 0 for t = 0. Its Fourier transform in
the time domain, the intermediate scattering function Fs(Q, t), can be measured by neutron
spin echo (NSE) techniques; finally, the counterpart in the frequency domain, the incoherent
scattering function Sinc(Q, ω), is accessible by e.g. time of flight (TOF) or backscattering (BS)
techniques [1]. Here, h̄ Q and h̄ω are the momentum and energy transfers in the scattering
experiment respectively.

For some simple cases—free nuclei in a gas, harmonic crystals, simple diffusion (SD) at
long times—Gs(�r , t) is a Gaussian function [2, 3]; in an isotropic system this implies

Ggauss
s (r, t) =

[
α(t)

π

]3/2

exp [−α(t)r2]. (1)

The calculation of the moments

〈r2n〉 =
∫ ∞

0
r2n Gs(r, t)4πr2 dr (2)

is then straightforward. For instance, the mean squared displacement of the atom 〈r2(t)〉 is
given in the Gaussian approximation by 〈r2(t)〉 = 3/[2α(t)]. The intermediate scattering
function is in such a Gaussian case entirely determined by 〈r2(t)〉 with the simple Q-
dependence given by

Fgauss
s (Q, t) = exp

[
−〈r2(t)〉

6
Q2

]
. (3)

In a general case, deviations of Gs(r, t) from the Gaussian form (equation (1)) may be
expected. These can be quantified in a first approximation by the so called second order
non-Gaussian parameter α2 defined as [4]

α2(t) = 3

5

〈r4(t)〉
〈r2(t)〉2

− 1 (4)

which is of course null in the Gaussian case.
To date, incoherent quasielastic NS experiments on the α-relaxation regime of glass-

forming polymers have revealed the following main features for the self-motion of hydrogens:

(i) the stretched time behaviour of Fs(Q, t) and
(ii) a Q-dependent characteristic time indicating some kind of diffusive-like character.

Concerning the stretching property, it is well established that Fs(Q, t) assumes the form of a
Kohlrausch–Williams–Watts (KWW) function

Fs(Q, t) = A exp

[
−

(
t

τw

)β]
, (5)

where τw is the Q- and T -dependent KWW-relaxation time and β < 1 the stretching exponent.
A is a Lamb–Mössbauer-factor (LMF)

A = exp

(
−〈u2〉

3
Q2

)
, (6)

which accounts for faster processes and it is characterized by an effective mean squared
displacement 〈u2〉. It was found [5] that the Q-dependence of τw can approximately be
described by a power law determined by the stretching exponent β,

τw(Q) ∼ Q−2/β . (7)

As polymers show typical values for β around 0.4–0.6, equation (7) predicts much stronger
Q-dependences than that characteristic for SD (Q−2). In figure 1(a) data corresponding to
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poly(vinyl methyl ether) [5] are shown. The master curve here represented has been obtained
by shifting the results for the characteristic time corresponding to different temperatures
towards those obtained at a reference temperature TR . The resulting curve shows a strong
Q-dependence that is very well described by equation (7) (solid line) for Q � 2 Å−1. Such
a behaviour has been found in a large number of polymer systems [5–8] in the low Q-regime
(Q � 1 Å−1 approximately). As an example, a master curve considering data corresponding
to six different polymer systems is depicted in figure 1(b). Since the β-value depends on
the system investigated, in order to check the universality of equation (7) the representation
of figure 1(b) shows the results for τw exponentiated to β. Polymer-dependent shift factors
have then been applied to superimpose the data in a single curve. The good agreement found
between different data is noteworthy, implying universality of behaviour. In this kind of plot,
the Q-dependence expressed by equation (7) translates into a Q−2-law. It is clear that the power
law proposed (solid line) gives account of the Q-dependence found experimentally in these
systems for Q � 1 Å−1. At higher Q-values slight deviations towards a weaker dependence
can be found in figure 1(b). These become evident for poly(vinyl methyl ether) at Q > 2 Å−1

approximately, as can be realized from figure 1(a).
The correlation between non-Debye behaviour (characterized by the stretching exponent

β) and Q-behaviour of τw in the α-relaxation of glass-forming polymers expressed by
equation (7) has important implications: for instance, the Gaussian approximation holds for
the self-motion of the hydrogens in the supercooled liquid state. Introducing equation (7) in (5)
and considering equation (6), it is found that Fs(Q, t) reads

Fs(Q, t) = exp

[
−

(
2〈u2〉 +

[
t

a(T )

]β)
Q2

6

]
(8)

where a(T ) is a factor giving the T -dependence of the characteristic time. In equation (8) we
can recognize just the functional form of equation (3). This means that, within the experimental
uncertainties, the self-part of the van Hove correlation function is a Gaussian function and
consequently the non-Gaussian parameter α2 has to be very close to zero. Moreover, the
increase of the mean squared displacement associated with the α-relaxation is sublinear in
time, as can be immediately deduced from the comparison of equations (8) and (3).

The result about the vanishing non-Gaussian parameter is in principle in apparent
contradiction to recent molecular dynamics (MD) simulation results on glass-forming
systems of different nature, e.g. water [9], Lennard-Jones liquids [10], selenium [11] and
orthoterphenyl [12]. In all these cases, an almost universal behaviour for this parameter is
found (see e.g. [11]). On the other hand, the validity of equation (7) has been mainly checked
by standard BS spectrometers, i.e., the Q-range accessed is usually restricted to Q � 1 Å−1. It
is noteworthy that in the case of poly(vinyl methyl ether), where the study was extended up to
Q ≈ 5 Å−1 by the thermal BS instrument IN13 at the Institut Laue Langevin (ILL, Grenoble,
France), indications of deviations from equation (7) appear at high Q, as has already been
mentioned (see figure 1(a)). These two facts motivated us to perform a critical check of the
validity of equation (7) in a wide Q-range. Two actions were taken:

(i) we carried out fully atomistic MD simulations on an archetypal polymer, polyisoprene
(PI);

(ii) we performed careful NS measurements on the same sample combining three
spectrometers, trying to experimentally cover the widest Q-range available.

In this paper we summarize the main results obtained from this combined effort. Both
the simulations and the measurements reveal a crossover from a Gaussian regime of sublinear
diffusion to a strongly non-Gaussian regime at short distances. Here, we propose a simple
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Figure 1. Momentum transfer dependence of the characteristic time associated with the self-
motion of protons in the α-relaxation regime. (a) Master curve of poly(vinyl methyl ether) built
removing the T -dependence by using the shift factors a(T ) (TR = 350 K) [5] (different symbols
correspond to different temperatures). The dashed–dotted line shows a Q−2 law, the solid line
the Q−2/β (β = 0.44) dependence. (b) Master curve (time exponentiated to β) constructed
with results of six polymers: polyisoprene (340 K, β = 0.57) ( ); polybutadiene (280 K,
β = 0.41) (•) [7]; polyisobutylene (390 K, β = 0.55) (◦) [8]; poly(vinyl methyl ether) (375 K,
β = 0.44) (full triangles) [5]; phenoxy (480 K, β = 0.40) (full rhombs) [5] and poly(vinyl
ethylene) (340 K, β = 0.43) (♦) [7]. The data have been shifted by a polymer-dependent factor τp

to obtain superposition. The solid line displays a Q−2-dependence corresponding to the Gaussian
approximation (equation (7)).

model based on an anomalous jump diffusion model with a distribution of jump lengths which
accounts for the behaviour observed. This model also leads to a time-dependent non-Gaussian
parameter exhibiting all features revealed so far from various simulations.

2. MD simulations and NS experiments

2.1. Simulation method

Fully atomistic MD simulations were carried out by using the Insight (Insight II 4.0.0 P
version) and the Discover-3 programs from MSI with the so called Polymer Consortium Force
Field (PCFF). The model system was built using the Amorphous Cell protocol. The polymer
simulated was polyisoprene, PI (–[CH2–CH=C(CH3)–CH2]–n), with n = 100. A first MD
simulation at 363 K was run for 1 ns using the Discover-3 program collecting data every 0.01 ps
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and a subsequent one (taking the previous output sample as an input for the following dynamics)
was run for 2 ns collecting data every 0.5 ps. The results of the second run agreed with those
of the first run, indicating that the sample was well equilibrated at this high temperature. This
procedure was also repeated for a number of temperatures (314, 338, 388, 413, 463 and 513 K).
Further details on the simulation method and validation can be found in [13–15].

2.2. Neutron scattering experiments

In order to avoid effects from the methyl group motions, a monodisperse PI sample with
deuterated methyl groups was investigated: –[CH2–CH=C(CD3)–CH2]–n (PId3). In this way
the scattering is dominated by the very high incoherent cross section of the hydrogens along
the main chain. The glass transition temperature Tg is 210 K. Details of the synthesis and
characterization can be found elsewhere [15]. To cover a very wide Q-range and connect with
it a huge dynamical range, we combined the following instruments:

(i) the Jülich NSE instrument (100 ps � t � 22 ns; 0.1 � Q � 0.3 Å−1; T = 340 K),
(ii) the NSE spectrometer IN11c (ILL) (8.4 ps � t � 1.4 ns; 0.34 � Q � 1.68 Å−1;

T = 280, 300, 320 and 340 K) and
(iii) the thermal BS instrument IN13 for the coverage of high Q-values 1.2 � Q � 4.7 Å−1

(resolution 10 µeV, energy window −130 µeV � h̄ω � 100 µeV; T = 260, 280 and
300 K).

3. Results

Starting from the atomic coordinates computed in the MD simulations at 363 K, the Fs(Q, t)
was calculated for the main chain protons. The second slow decay above ∼2 ps of such
curves, attributed to the α-relaxation, could be well described by the usual KWW function
(equation (5)). The prefactor A followed equation (6) with 〈u2〉 ∼ 0.41 Å2. The values found
for the shape parameter β varied around β = 0.40, which is a value well compatible with
previous measurements (e.g. dielectric spectroscopy and NSE [16]). Fixing the value of β to
0.40, the characteristic time τw was determined as a function of Q. Figure 2(a) displays the
obtained values of τw exponentiated to β (white squares). We use this representation, which
was already presented in figure 1(b), because it allows us to check the validity of equation (7)
building master curves even when the different data brought together correspond to different
β-values. We can appreciate that, though below about 1.3 Å−1 the Gaussian approximation
(equation (7) corresponding to a Q−2-law in figure 2(a) (dotted line)) is perfectly fulfilled,
severe deviations are present at higher Q-values. There, a much weaker Q-dependence than
that expected from the Gaussian approximation is clearly observed. We thus find a clear
crossover from Gaussian to non-Gaussian behaviour in the Q-dependence of the τw associated
with the self-motion of the main chain protons in the α-relaxation regime. This crossover
takes place at about 1.3 Å−1, which in this case corresponds to the Q-region where the static
structure factor of PI shows its first maximum [15].

The deviations from Gaussianity reflected in the Q-dependence of the characteristic time
at high Q-values should be associated with non-vanishing values of the α2(t) parameter. This
is demonstrated in figure 2(b), where the values for α2(t) computed from the MD simulations
according to equations (4) and (2) are displayed. This parameter shows two maxima, the first
of which can be attributed to the particular microscopic dynamics, which is mainly determined
by the relative motion of the protons with respect to the main chain carbons [13]. The second
peak, centred at t∗ ∼ 4 ps, is responsible for the deviations found from Gaussian behaviour
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Figure 2. (a) Momentum transfer dependence of the master curve obtained for the characteristic
time associated with the self-motion of the main chain protons in polyisoprene (exponentiated
to the shape parameter β). Quasielastic NS results [17] (full symbols) have been shifted taking
300 K as the reference temperature (left-hand scale). MD simulation results at 363 K [13] (empty
squares) are also shown (right-hand scale). (b) Non-Gaussian parameter α2 as obtained from MD
simulations at 363 K for polyisoprene. The dashed vertical arrow indicates the position of the
maximum of α2, t∗. The dashed line in (a) shows a τw ∼ Q−2/β law, the solid lines the prediction
of the anomalous jump diffusion model (equations (13) and (18)).

at high Q-values. This can easily be realized with the following argument. At low Q, below
1.3 Å−1, the characteristic time τw is slow, τw(Q � 1 Å−1) � 100 ps. As can be deduced
from figure 2(b), the value of the non-Gaussian parameter corresponding to t � 100 ps is
quite small, i.e., α2[τw(Q � 1 Å−1)] � 0.2. However, above the crossover Q-value, the
characteristic time becomes fast, showing values below 10 ps for Q � 2 Å−1. These times
correspond just to the region where α2(t) presents its second maximum, i.e., they are close
to t∗. Thus we can see that the deviations towards non-Gaussian behaviour of τw are intimately
linked to the main peak of α2(t) and therefore their origin should be common.

What about the experimental results? Does the real sample also show such a crossover
from Gaussian to non-Gaussian behaviour? Following the same procedure as for the MD-
simulation results, the NSE experimental curves were fitted to KWW functions (equation (5)).
As BS techniques measure in the frequency domain, for the IN13 spectra the Fourier transform
of the KWW function was used. In the temperature range investigated, we observed a
slight increase of the experimental value for the β-parameter with increasing temperature
(β : 0.4–0.57 in the interval T : 260–340 K) [17]. The Q-dependent characteristic times
obtained from these fittings are plotted in figure 2(a) together with the MD-simulation results.
Temperature-dependent shift factors cT in this representation have been applied to the values
of τβ

w corresponding to the different temperatures in order to superimpose them over those at
the reference temperature TR = 300 K. As can be seen, this figure shows the clear answer
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to the question asked above. A nearly perfect agreement is found between experiments and
simulation results on PI, revealing just the same crossover. Though it is not the aim of this
paper to present a quantitative and exhaustive comparison of NS and MD simulation results,
we note that the MD simulation data at 363 K coincide with the experimental ones at 320 K.
On the other hand, it is noteworthy that the Q-range experimentally covered is even larger
than that accessed by MD simulations. This was only possible by the combination of results
corresponding to different temperatures obtained by the three spectrometers used. Concerning
the amplitude of the α-relaxation, from the IN13 data the following values are obtained for
〈u2〉 : 0.43 ± 0.02 Å2 at 260 K, 0.55 ± 0.02 Å2 at 280 K and 0.58 ± 0.01 Å2 at 300 K, in good
agreement with previous BS results on a similar sample [18].

We have thus shown by both MD simulations and incoherent quasielastic NS the existence
of a crossover from a Gaussian regime of sublinear diffusion to a strongly non-Gaussian regime
at short distances for the α-relaxation in polyisoprene.

4. Discussion

Any theoretical approach or model considered for interpreting the crossover found in the Q-
dependence of τw(Q) should also reproduce the behaviour of α2(t). Several frameworks, such
as those discussed in [13], can be invoked. For instance, the mode coupling theory (MCT)
for the glass transition [19–22] predicts a Q-dependence for the characteristic time of the self
correlation function that at high Q-values strongly deviates from that expected in the Gaussian
case. Qualitative agreement between MCT predictions and the behaviour observed by us for
τw(Q) is found [13]. Moreover, α2(t) calculated in the framework of the MCT for a hard-
sphere system also shows a qualitatively similar behaviour to that reported here as pointed out
in [13].

Most of the interpretations given in the literature for the behaviour of α2 have been based
on the existence of the so called ‘mobile particles’ or on considerations related to the ill defined
concept of dynamical heterogeneity [23]. A possible scenario based on the widely assumed
idea of identifying Gaussian behaviour with dynamically homogeneous behaviour has already
been discussed in [13]. In such a framework, the crossover found could be understood as
a homogeneous to heterogeneous crossover of the incoherent dynamics involved in the α-
relaxation. As mentioned in [13], this interpretation would imply that the results obtained
by different techniques could be affected by the underlying dynamic heterogeneity at t∗ in
a different way. The closer the timescale of the α-process probed by a particular technique
is to the t∗-range, the more sensitive this technique is to the heterogeneous dynamics. On
the other hand, it is noteworthy that in most of the works invoking the concept of dynamical
heterogeneity the origin of the non-vanishing values of α2 is usually sought in connection
with the origin of the non-exponential behaviour of the α-relaxation, i.e., the stretching of the
relaxation function. In none of these works is the Q-dependence of the characteristic relaxation
time considered.

Here we will focus on another possible explanation for the crossover found, which was
recently pointed out [17], based on the existence of a distribution of discrete jumps underlying
the self atomic motions in the α-process. As we will see, this simple interpretation, which, in
principle, is compatible with the framework of the MCT, accounts for the observed behaviour
in PI and allows us to deduce all the universal features reported to date for the non-Gaussian
parameter α2 in different glass-forming systems.

We have shown a clear correlation between the non-Gaussian parameter α2 and the
deviations from Gaussian behaviour found for τw(Q). On the other hand, these deviations
recall in some way the behaviour described in the text books for the simple jump diffusion
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(see, e.g. [2, 24]). In the framework of this model, proposed a long time ago (see [2, 24, 25]),
finite jump lengths tend to cause a bending of the dispersion for the diffusive relaxation time
away from the Q−2 law which takes place for SD at low Q and which in such a simple case
corresponds to the Gaussian behaviour of Gs(r, t) or Fs(Q, t).

The jump diffusion model [2, 24, 25] assumes that an atom remains in a given site for a
time τ0, where it vibrates around a centre of equilibrium. After τ0, it moves rapidly to a new
position separated by the vector �� from its original site. For SD the incoherent intermediate
scattering function is

F jump,SD
s (Q, t) = A exp

[
−b(Q)

t

τ0

]
, (9)

where b(Q) depends on the particular geometry of the jumps involved, i.e., on the vectors ��.
A reasonable assumption for liquids and disordered systems is that these vectors are randomly
oriented and their moduli are distributed according to a function

f0(�) = �

�2
0

exp

(
− �

�0

)
, (10)

which involves a preferred jump distance �0. The average value of the jump length is then
〈�〉 = √

6�0. For such a kind of mechanism it is obtained [24] that

b(Q) = Q2�2
0

1 + Q2�2
0

. (11)

Note that for Q�0 → 0, b(Q) → Q2�2
0. In that limit, F jump,SD

s (Q, t) has a Gaussian
form with an associated mean squared displacement that increases in a way proportional to
the time. Glass-forming systems exhibit stretched exponential forms for the self-correlation
function (equation (5)). An incoherent scattering function analogous to that for the simple jump
diffusion (equation (9)) may be constructed by introducing the stretching in the time-dependent
part:

F jump
s (Q, t) = A exp

[
−b(Q)

(
t

τ0

)β]
. (12)

In this way, in the limit Q�0 → 0 the Gaussian approximation is recovered; but now a
sublinearly increasing mean square displacement would be obtained for small Q-values, as
observed from experiments and simulation. The resulting characteristic time is then given by

τw = τ0

[
1 +

1

Q2�2
0

] 1
β

, (13)

for which the asymptotic low-Q limit is just τw ∝ Q−2/β (equation (7)). Our results can be
perfectly described by this model with a value of �0 ∼ 0.42 Å. This is shown in figure 2(a),
where the solid line is a fit with equation (13) (exponentiated to β) and the value of �0 fixed
to 0.42 Å. At the reference temperature of 300 K, for the only adjustable parameter the result
τ0 [ns] = 0.1671/β is obtained. We can thus conclude that both the experimental and the
MD-simulation results on this polymer are compatible with a scenario of sublinear diffusion
for the self-motions of the hydrogen atoms which involves a distribution of elemental jump
lengths with a most probable value of �0 ≈ 0.42 Å.

We can now ask whether this model also accounts for other observables accessed by the
simulations, such as α2. To obtain α2 for this model, the total expression used for describing
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the self-correlation function has to be considered. It consists of the jump anomalous diffusion
incoherent scattering function (equations (12) and (11)) with equation (6) for the prefactor A:

Fs(Q, t) = exp

(
−〈u2〉

3
Q2

)
exp

[
−

(
Q2�2

0

1 + Q2�2
0

)(
t

τ0

)β]
. (14)

For small values of the variable Q2�2
0, equation (14) can be approximated as

Fs(Q, t) = exp

[
−〈u2〉

3
Q2 − Q2�2

0

(
t

τ0

)β(
1 − Q2�2

0 + · · ·
)]

. (15)

Comparing this with the general expression for the expansion of Fs(Q, t) in Q (see,
e.g., [26])

Fs(Q, t) = exp

[
−〈r2(t)〉

6
Q2 +

α2(t)〈r2(t)〉2

72
Q4 + · · ·

]
, (16)

the following results are obtained for 〈r2(t)〉 and α2(t):

〈r2(t)〉 = 2〈u2〉 + 6�2
0

(
t

τ0

)β

, (17)

α2(t) = 72�4
0(

t
τ0

)β

[2〈u2〉 + 6�2
0(

t
τ0

)β]2
. (18)

In order to compare the results of equations (17) and (18) with those of the simulations,
the values of the different parameters involved have to be known for 320 K, the equivalent
temperature to the 363 K of the simulations. From the results obtained by IN13 for 〈u2〉,
a linear temperature dependence extrapolates to 〈u2〉 ≈ 0.66 Å2 at 320 K. �0 is assumed
to be temperature independent in a first approximation. With the shape parameter found in
the simulations β = 0.4 and using the appropriate cT -value (c320 K = 0.42), τ0 = 1.3 ps
is obtained. The values so calculated for α2(t) are plotted in figure 2(b) as a solid line.
As can be appreciated, a semiquantitative agreement is found between the values obtained
from the model of anomalous diffusion with distribution of jump lengths and those resulting
from the simulations. Naturally, the comparison applies only to timescales longer than that
characteristic for the fast dynamics, since the fast process has been simply parametrized by the
LMF (equation (6)), i.e., through the effective contribution to the displacement characterized
by 〈u2〉. In the range of applicability (t > 1 ps) the shape and the position of the peak of α2(t)
are quite similar for both sets of data.

With this result at hand we now exploit the model further in order to see whether it is able
to reproduce the main features of α2(t) that are reported in the literature from simulations of
glass-forming systems in general. Figure 3(a) shows the T -behaviour of α2(t) calculated taking
into account the values experimentally determined for PI for the different parameters involved
in the model. At first sight, the qualitative similarity shown by the non-Gaussian parameter so
calculated with the data usually reported in the literature becomes evident. Moreover, we can
check whether this model also accounts for other seemingly universal features of α2: (i) in the
asymptotic short time limit, tα2(t) ∝ t3/2; (ii) the time t∗ where the maximum of α2 occurs
shifts with τw; (iii) the magnitude of α2 increases with decreasing temperature.

(i) First of all, figure 3(b) explores the prediction of Caprion et al [27]): the collapse of tα2(t)
in the short time regime to a universal function proportional to t3/2. It is evident that the
simple anomalous jump diffusion model also accounts for this very general feature.
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Figure 3. Time evolution of the non-Gaussian parameter α2 as predicted by the anomalous jump
diffusion model with the parameters obtained from the quasielastic NS results on polyisoprene for
the temperatures indicated. Figure (b) shows the data in (a) multiplied by the time.

(ii) From equation (18) it is straightforward to calculate t∗ as the time where α2(t) exhibits its
maximum. We arrive at t∗ = τ0(〈u2〉/3�2

0)
1/β . Given the weak temperature dependences

of 〈u2〉 and β, to a good approximation the temperature dependence of t∗ follows that of
τ0. Using the experimental parameters, figure 4 displays t∗ and τ0 as a function of 1/T .
Both times are basically identical. t∗ agrees nearly quantitatively with the jump time τ0—
a very plausible result. Moreover, figure 4 also shows that t∗(T ) approximately follows
τw(T ). This is naturally understood because, according to equation (13), the temperature
dependence of τw and τ0 are the same apart from the slight changes of β with temperature.

(iii) Inserting t∗ into equation (18), αmax
2 = α2(t∗) = 3�2

0/2〈u2〉 is obtained. With �0

approximately constant and 〈u2〉 decreasing linearly with T , αmax
2 increases significantly

with decreasing temperature. The values of αmax
2 calculated by using the experimentally

determined values for the parameters involved in the model are shown in figure 5 in
comparison with the MD simulation results at different temperatures. The temperature
scale has been shifted in order to compatibilize NS and MD simulation results (as already
mentioned, MD simulations at 363 K are equivalent to experimental results at 320 K).

We can thus conclude that the main ‘universal’ features reported in the literature for α2(t)
are well reproduced by a simple anomalous jump diffusion model with a distribution of jump
lengths.

Now we can discuss the implications of the anomalous jump diffusion concerning the so
called heterogeneity of the α-relaxation. First of all, we can say that the above mentioned
model in fact involves a heterogeneous picture for the self atomic motions in the α-relaxation
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0

0.2

0.4

0.6

0.8

1

300 350 400 450 500 550

T(K)

α 2m
ax

Figure 5. Temperature dependence of the maximum value of α2, αmax
2 = α2(t∗), as obtained from

the anomalous diffusion jump model with the experimental parameters determined for polyisoprene
(solid line) and from the simulations for the main chain protons (•) and for the main chain carbons
(◦). The temperature scale for the model data has been shifted 43 K to match that of the simulations.

regime which is manifest at short length scales. There, each atom can jump over different
distances at each moment; therefore, at large Q, where the neutron wavepacket interacts only
along a single step of the diffusion process, the system looks heterogeneous-like and non-
Gaussianity is evident. However, for small Q, the contributions to Fs(Q, t) originate from a
large space volume of size ∼1/Q; the scattering process observes the motion over long paths,
i.e., over many diffusive elemental steps. Then, the result does not depend on the nature of the
single step: at large scales the sublinear regime is reached and the system becomes Gaussian.
In this framework, we could take t∗, i.e., the time at which α2(t) displays its maximum, as
a measure of the ‘lifetime’ of the heterogeneous behaviour. From the simulation results at
363 K (corresponding to experimental results at about 320 K) we can see that τw ∼ t∗ only for
Q-values of the order of 3 Å−1. However, at Q-values of the order of 0.8 Å−1, τw ∼ 25t∗. It is
noteworthy that in this framework the non-Gaussian behaviour,characterized by the α2(t) peak,
is not related to the existence of any distribution of single-exponential relaxations giving rise
to the observed α-relaxation stretching. This kind of distribution is usually invoked when the
so-called heterogeneity of the α-relaxation is discussed in connection with the non-Gaussian
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behaviour. As the simple anomalous jump diffusion model here proposed can explain most of
the ‘universal’ features of the α2(t) behaviour reported so far (see, e.g., [10–12, 27–29]), we
may ask whether the origin of α2(t) in glass-forming systems in general is just the existence
of a jump length distribution.

Finally, we would like to remark that the scenario of anomalous jump diffusion is, in
principle, compatible with the framework of the MCT. The jumps leading to the sublinear
diffusion would correspond in this framework to the dynamics allowing the decaging
mechanism.
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